STUDIES ON 3-EPIMERIC L-2-HEXULOSE PHENYLOSAZONES. STRUCTURE AND ANOMERIC CONFIGURATION OF THE 3,6-ANHYDRO-OSAZONE DERIVATIVES OBTAINED FROM L-xylo- AND L-lyxo-2-HEXULOSE PHENYLOSAZONE<sup>††</sup>

MOHAMMED A. E. SALLAM\*, ESTRWAH I. A. HEGAZY,

Chemistry Department, Faculty of Science, Alexandria University, Alexandria (Egypt)

ROY L. WHISTLER\*\*, JOHN L. MARKLEY, AND DAVID H. CROLLT

Biochemistry Department\*\* and Chemistry Department\*, Purdue University, West Lafayette, Indiana 47907 (U.S.A.)

(Received October 10th, 1981; accepted for publication, November 19th, 1981)

### **ABSTRACT**

Dehydration of the 3-epimeric 2-hexulose phenylosazones L-xylo-hexulose phenylosazone and L-lyxo-hexulose phenylosazone afforded 3,6-anhydro-L-lyxo-2-hexulose phenylosazone (2) as the preponderant isomer from both. The identity of 2 was obtained by t.l.c., and by acetylation followed by comparison of the products. Acetylation of 2 with acetic anhydride-pyridine afforded the di-O-acetyl derivative 4, and further acetylation gave the N-acetyldi-O-acetyl derivative 5. Refluxing of 2 with copper sulfate afforded a C-nucleoside analog, namely, 2-phenyl-4- $\alpha$ -L-threo-furanosyl-1,2,3-osotriazole (6). The anomeric configuration was determined by n.m.r. spectroscopy. The stereochemical course of the dehydration process and the mass spectra of compounds 2, 4, 5, and 6 are discussed.

# INTRODUCTION

Monosaccharide 3,6-anhydro-osazones are useful precursors for the synthesis of C-nucleoside analogs having aldofuranosyl sugar moieties<sup>2</sup>, especially those having rare configurations that cannot be readily obtained by other synthetic methods. They are prepared by dehydrative cyclization of saccharide osazones with methanolic sulfuric acid solution<sup>3-7</sup>. Recent studies on the dehydration of 3-epimeric D-2-hexulose phenylosazones<sup>9</sup> showed that, during the 3,6-anhydro-ring formation, inversion at C-3 of both 3-epimeric D-2-hexulose phenylosazones takes place with the formation of the same two isomeric 3,6-anhydro-osazones. The isomer having a trans relationship between the 2-hydroxyl group and the bis(phenylhydrazone) residue preponderates. The main problem militating against the extensive use of this reaction

<sup>††</sup>Studies on Anhydro-osazones, Part VI. For Part V, see ref. 1.

<sup>\*</sup>To whom inquiries should be addressed.

in the field of C-nucleosides has been determination of the anomeric configuration of the products. Circular dichroism studies<sup>10</sup> have been used for this purpose, but n.m.r. spectroscopy has been shown<sup>8</sup> to be a more reliable tool for the assignment of the anomeric configuration, because of the mutarotation exhibited by the chelated-ring structure of osazones, which affects the chiroptical measurements.

In the present work, we studied the dehydration of the 3-epimeric L-xylo- and  $\mathbb{E}$ -lyxo-2-hexulose phenylosazones with methanolic sulfuric acid solution. Refluxing L-xylo-2-hexulose phenylosazone (1) with methanolic sulfuric acid solution, with monitoring of the reaction by t.l.c., afforded 3,6-anhydro-L-lyxo-hexulose phenylosazone (2) as the preponderant product. Compound 2 is formed from 1 with inversion in the configuration of C-3 (see Scheme 1). Its n.m.r. spectrum (see Fig. 1) showed the anomeric proton as a doublet at  $\delta$  4.38 ( $J_{1',2'}$  4.2 Hz); this value of the coupling constant is in close agreement<sup>11</sup> with the trans arrangement for H-1' and H-2' of the  $\alpha$ -L-threo configuration of the glycosyl group. The minor isomer 3, which is formed from 1 without inversion in the configuration of C-3, was detected by t.l.c. as a trace in the reaction products, and was tentatively assigned the  $\beta$ -L-threo configuration.

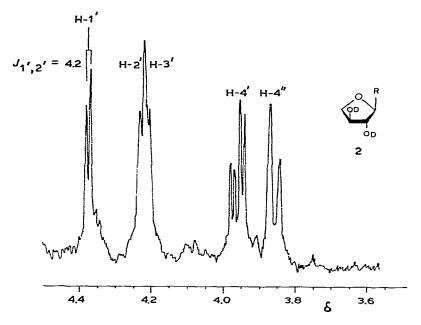



Fig. 1. N.m.r. spectrum, at 360 MHz, of 3,6-anhydro-L-lyxo-hexulose phenylosazone (2) + CD<sub>3</sub>CO<sub>2</sub>D [high resolution, for the sugar moiety; R = bis(phenylhydrazone) residue.]

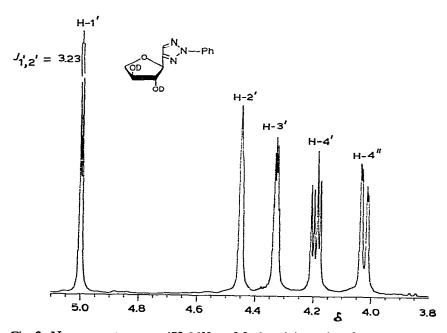



Fig. 2. N.m.r. spectrum, at 470 MHz, of 2-phenyl-4- $\alpha$ -L-threofuranosyl-1,2,3-osotriazole (6) after addition of CD<sub>3</sub>CO<sub>2</sub>D (high resolution, for the sugar moiety).

Acetylation of 2 with acetic anhydride-pyridine afforded the di-O-acetyl derivative 4. Its infrared (i.r.) spectrum showed a band at 1730 cm<sup>-1</sup> corresponding to the O-acetyl groups. Its n.m.r. spectrum showed the two acetyl groups as two singlets, each of three-proton intensity, at  $\delta$  2.11 and 2.08, and the signal of the anomeric proton was a doublet at  $\delta$  4.62 ( $J_{1',2'}$  4.57 Hz). Further acetylation of 2, by prolonged treatment with acetic anhydride-pyridine, or by refluxing with acetic anhydride, gave the N-acetyldi-O-acetyl derivative 5. Its i.r. spectrum showed the presence of both O- and N-acetyl groups, at 1760 and 1705 cm<sup>-1</sup>, respectively. The n.m.r. spectrum of 5 showed the two O-acetyl groups as two singlets, each of three-proton intensity, at  $\delta$  2.06 and 1.97; the signal of the N-acetyl group was a broad singlet at  $\delta$  2.65, and that of the anomeric proton was a doublet at  $\delta$  4.44 ( $J_{1',2'}$  3.6 Hz).

On being refluxed with copper sulfate, compound 2 afforded the C-nucleoside derivative, namely, 2-phenyl-4- $\alpha$ -L-threofuranosyl-1,2,3-osotriazole (6). Its n.m.r. spectrum (see Fig. 2) showed the anomeric proton as a doublet at  $\delta$  4.86 ( $J_{1',2'}$  3.23 Hz), shifted to lower field, far from the glycosyl protons. The small coupling-constant observed for 6 is consistent<sup>11</sup> with the trans arrangement between H-1' and H-2' of the  $\alpha$ -L-threofuranosyl group. Additional evidence supporting the  $\alpha$ -L-threo configuration for compound 6 was obtained from the negative specific rotation ( $[\alpha]_D^{20}$  -6.8°, in methanol) which is opposite in sign to the value ( $[\alpha]_D^{20}$  +6.2°, in methanol) for the enantiomeric diastereoisomer, namely, 2-phenyl-4- $\alpha$ -D-threofuranosyl-1,2,3,-osotriazole<sup>9</sup>.

The mass spectrum of 2 showed a fragmentation pattern identical to that of 3,6-anhydro-D-2-hexulose phenylosazones<sup>12</sup>, with the molecular-ion peak at m/z 340 as a base peak. The mass spectrum of the di-O-acetyl derivative 4 (see Fig. 3a) showed the molecular-ion peaks M and (M + 1) at m/z 424 and 425, respectively; these were followed, at lower mass, by peaks at m/z 230, 213, and 212. Peaks characteristic of saccharide phenylosazones, at m/z 93, 92, and 77 (corresponding to PhNH<sub>2</sub>, PhNH, and Ph), were abundant. The base peak occurred at m/z 43, corresponding to a CH<sub>3</sub>CO group. The mass spectrum of the N-acetyldi-O-acetyl derivative 5 (see Fig. 3b) showed the molecular-ion peaks M and (M + 1) at m/z 466 and 467, respectively; these were followed, at lower mass, by peaks at m/z 230, 213, and 212. The peaks at m/z 136 and 135, respectively corresponding to PhN+H<sub>2</sub>COCH<sub>3</sub> and PhNHCOCH<sub>3</sub>, which were absent for compound 4, proved the presence of the N-acetyl group in 5. The peaks characteristic of saccharide phenylosazones, at m/z 93, 92, and 77, were also abundant. The mass spectrum of 5 showed a remarkable difference from that of 4 as regards the base peak. Compound 5 showed the base peak at m/z 93, corresponding to PhNH<sub>2</sub>, whereas that for compound 4 was at m/z 43. The mass spectrum of the C-nucleoside analog 6 showed the molecular-ion peaks, M and (M + 1), at m/z247 and 248, respectively. The peak (B + 30) characteristic for C-nucleosides<sup>9</sup> was a base peak at m/z 174, as expected for 2-phenyl-1,2,3-osotriazole C-nucleosides<sup>9</sup>, and this indicated the carbon-carbon linkage between the L-threofuranosyl group and the base moiety.

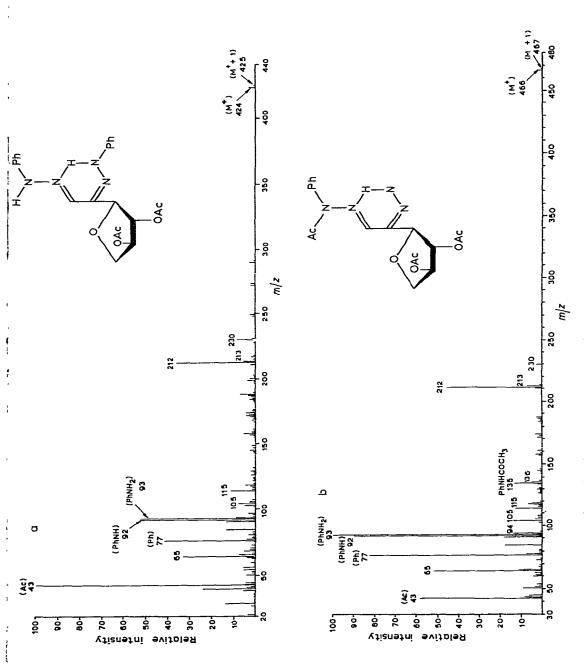



Fig. 3. Mass spectrum of (a) 4,5-di-O-acetyl-3,6-anhydro-t-/yxo-2-hexulose phenylosazone (4); (b) N-acetyl-4,5-di-O-acetyl-3,6-anhydro-t-/yxo-2-hexulose phenylosazone (5).

In order to investigate the steric course of the dehydration of 1, the 3-epimeric L-lyxo-2-hexulose phenylosazone 7 was similarly dehydrated with methanolic sulfuric acid solution (with monitoring of the reaction by t.l.c.), and the products were compared with those from 1. Dehydration of 7 afforded the same 3,6-anhydro-osazones, 2 and 3, as had been obtained from 1; they respectively had the same mobility in t.l.c., and compound 2 was also obtained as the preponderant isomer from 7. Acetylation of 2 with acetic anhydride-pyridine afforded the di-O-acetyl derivative 4, having the same melting and mixed melting point. Further acetylation afforded the same N-acetyldi-O-acetyl derivative 5, having the same melting and mixed melting point.

The formation of 2 as the preponderant isomer from both 3-epimeric L-2-hexulose phenylosazones 1 and 7 (with inversion at C-3 from 1, and without inversion from 7) constitutes direct proof for the stereospecificity of the dehydration of L-2-hexulose phenylosazones. The formation of the 3,6-anhydro ring takes place in the sterically favored direction, with the production of the preponderant isomer 2, having a trans relationship between the bis(phenylhydrazone) residue and the 4-hydroxyl group (C-2' of the glycosyl group formed), as indicated by a study of models (see Scheme 2). The minor isomer 3, having a cis relationship between the bis(phenylhydrazone) group and the 4-hydroxyl group, is formed by cyclization in the sterically disfavored direction.

The inversion in the configuration at C-3 of both 3-epimeric 2-hexulose phenylosazones 1 and 7 cannot be explained as being of a simple, Sn2 type; otherwise, 1 and 7 should produce different, preponderant isomers by the rear-side 6-oxygen attack on C-3 of the starting osazone (the  $\alpha$ -L-threofuranosyl isomer, 2, would be

HO

$$_{AO}$$
 $_{AO}$ 
 $_{AO}$ 

Fig. 4. Conformers of the  $\beta$ -L-threofuranosyl moiety of 3,6-anhydro-L-lyxo-2-hexulose phenylosazone (2).

obtained from 1 and the  $\beta$ -L-threofuranosyl isomer, 3, from 7). The possible explanation for the observation that the cyclization of 1 and 7 produces the same two 3,6-anhydro-osazones, 2 and 3, is that racemization occurs at C-3 to afford the same 2-(phenylazo)-2-ene intermediate, as suggested by Simon and co-workers<sup>13,14</sup> and El Khadem<sup>15</sup>. Although such intermediates have not yet been isolated, several 2-ene intermediates have been shown to be formed in the course of osazone reactions<sup>14</sup>. The proposed mechanism is supported by the observation<sup>4</sup> that D-glucose alkylphenylosazones cannot be converted into anhydro-osazones. Recent studies on 3-epimeric hexulose phenylosazones<sup>9</sup> confirm the stereospecificity of the dehydration of hexulose phenylosazones<sup>14</sup>, and support the racemization at C-3 of the starting osazone by the formation of the same 2-ene alkenic intermediate from each 3-epimeric pair of hexulose phenylosazones.

In connection with the conformation of the aldofuranosyl moiety of the C-nucleoside analog  $\mathbf{6}$ , the puckered structures of the L-threofuranosyl ring are shown in Fig. 4. Conformers  $E_2$  and  ${}^3E$  are the least favored, due to the 1,3-syn-axial interaction between the base moiety and the 3-hydroxyl group for  $E_2$  and the axial orientation of the 2-hydroxyl group for  ${}^3E$ . It is expected that compound  $\mathbf{6}$  will mostly be present as an equilibrium mixture of  ${}^2E \rightleftharpoons {}^2T_3 \rightleftharpoons E_3$ , having all substituents equatorially attached.

## **EXPERIMENTAL**

General. — Melting points are uncorrected; evaporations were performed under diminished pressure below 60°. Thin-layer chromatography (t.l.c.) was conducted

on silica gel (Kiesel gel G, Merck) with 3:1 benzene-ethanol as the solvent. I.r. absorption spectra were recorded with a Unicam SP 1025 instrument. N.m.r. spectra were recorded with Nicolet 360-MHz and 470-MHz instruments, using internal tetramethylsilane as the reference. Mass spectra were recorded with Dupont MS 21-492 B and Finnigan 6100 Data System Gas-Chromatograph/EI-CI spectrometers. Combustion analyses were performed in the Department of Chemistry, Cairo University, Cairo, Egypt, and the Department of Chemistry, Purdue University, W. Lafayette, IN, U.S.A.

3,6-Anhydro-L-lyxo-2-hexulose phenylosazone (2). — Method 1. From L-xylohexulose phenylosazone (L-sorbose phenylosazone, 1). Compound 1 (5 g) was boiled under reflux with 0.05% methanolic sulfuric acid (250 mL) for 6 h, and the reaction was monitored by t.l.c.; after 6 h, t.l.c. revealed the absence of the starting osazone and formation of two more-mobile spots having  $R_F$  0.49 and 0.32, respectively. The mixture was stirred with barium carbonate, filtered, and the filtrate concentrated to a small volume, whereupon yellow needles separated; yield 3 g; these were recrystallized from methanoi, to give chromatographically (t.l.c.) pure, yellow needles of 2; m.p. 225-226° (lit.6 m.p. 220-221°);  $v_{\text{max}}^{\text{KBr}}$  3320 (OH) and 1605 cm<sup>-1</sup> (C=N); n.m.r. data (360 MHz, acetone- $d_6$ ):  $\delta$  3.84-4.38 (m, 7 H, sugar protons), 6.88-7.54 (m, 10 H, aromatic protons), 7.87 (s, 1 H, aldimino proton), 9.87 (s, 1 H, nonchelated NH of C-1 hydrazone residue), and 12.41 (s, 1 H, chelated NH of C-2 hydrazone residue); after addition of CD<sub>3</sub>CO<sub>2</sub>D, the two NH protons and the two OH protons disappeared:  $\delta$  3.85–3.87 (bd, 1 H, H-4",  $J_{3',4''}$  zero), 3.94–3.98 (dd, 1 H, H-4',  $J_{3',4''}$ 3.9,  $J_{4^{\circ}.4^{\circ}}$  9.5 Hz), 4.21–4.23 (m, 2 H, H-2',3',  $J_{2^{\circ},3^{\circ}}$  2.3 Hz), and 4.38 (d, 1 H, H-1',  $J_{1',2'}$  4.2 Hz); mass-spectral data (selected ions): m/z 340 (100, M), 188 (13), 174 (6), 158 (5), 105 (4), 104 (4), 94 (8, PhN+H<sub>3</sub>), 93 (53, PhNH<sub>2</sub>), 92 (49, PhNH), 91 (13, PhN), 77 (49, Ph), and 65 (51, cyclopentadienyl ion).

Method 2. From L-lyxo-hexulose phenylosazone (7). Compound 7 (4 g, prepared from the mixture of the 2-epimeric hexoses L-talose and L-galactose obtained from L-lyxose cyanohydrin)<sup>16</sup> was boiled for 4 h under reflux with methanolic sulfuric acid (300 mL), the reaction being monitored by t.l.c.; after 4 h, t.l.c. (solvent A) revealed the formation of two spots similar to those obtained by method 1, at the same  $R_F$  values (solvent A). The solution was processed as described for compound 1; yield 3 g. It was purified by column chromatography with solvent A as the eluant; the fractions were collected, and evaporated to dryness, to give chromatographically pure (t.l.c.), yellow needles, m.p. and mixed m.p. (with 2) 222–224°, and having the same  $R_F$  values.

The minor isomer 3 was detected in the mother liquor (methods 1 and 2), by t.l.c. using solvent mixture A, at  $R_{\rm F}$  0.32.

4,5-Di-O-acetyl-3,6-anhydro-L-lyxo-2-hexulose phenylosazone (4). — A solution of 2 (2 g) in pyridine (7 mL) was treated with acetic anhydride (7 mL) for 24 h at room temperature; it was then poured onto crushed ice, and the acetate was filtered off, washed with water, and dried; yield 2.4 g. The product was recrystallized from methanol, to give yellow needles, m.p. 121-122°;  $v_{\text{max}}^{\text{KBr}}$  1730 (OAc) and 1605 cm<sup>-1</sup>

(C=N); n.m.r. data (470 MHz, CDCl<sub>3</sub>):  $\delta$  2.083 and 2.113 (d, 6 H, 2 CH<sub>3</sub>CO), 3.96–3.87 (dd, 1 H, H-4",  $J_{3',4''}$  2.5,  $J_{4',4''}$  10.6 Hz), 4.187–4.221 (dd, 1 H, H-4',  $J_{3',4'}$  5.4 Hz), 4.62 (d, 1 H,  $J_{1',2'}$  4.2 Hz), 5.215–5.230 (dd, 1 H, H-3',  $J_{2',3'}$  4.9 Hz), 6.917–7.369 (m, 10 H, aromatic protons), 7.57 (s, 1 H, aldimino proton), 7.711 (s, 1 H, nonchelated NH of C-1 hydrazone residue), and 12.259 (s, 1 H, chelated NH of C-2 hydrazone residue); after addition of CD<sub>3</sub>CO<sub>2</sub>D the two NH protons disappeared.

Anal. Calc. for  $C_{22}H_{24}N_4O_5$ : C, 62.24; H, 5.70; N, 13.21. Found: C, 62.41; H, 5.58; N, 13.20.

N-Acetyl-4,5-di-O-acetyl-3,6-anhydro-L-lyxo-hexulose phenylosazone (5). — Compound 2 (2 g) was acetylated with acetic anhydride-pyridine for 7 days at room temperature, the mixture processed as described for 4, and the solid product recrystallized from methanol, to give yellow needles, m.p. 178–180°;  $v_{\rm max}^{\rm KBr}$  1760 (OAc), 1705 (NAc), and 1590 cm<sup>-1</sup> (C=N); n.m.r. data (470 MHz, CDCl<sub>3</sub>):  $\delta$  1.966 and 2.059 (d, 6 H, 2 CH<sub>3</sub>CO), 2.648 (bs, 3 H, N-CH<sub>3</sub>CO), 3.782–3.809 (dd, 1 H, H-4",  $J_{3',4''}$  2.0 Hz), 4.030–4.063 (dd, 1 H, H-4',  $J_{3',4'}$  5.0 Hz), 4.440 (d, 1 H, H-1',  $J_{1',2'}$  3.6 Hz), 5.108–5.117 (m, 1 H, H-3'), 5.529–5.536 (bs, 1 H, H-2',  $J_{2',3'}$  2.9 Hz), 6.963–7.593 (m, 10 H, aromatic protons), and 12.22 (bs, 1 H, chelated NH of C-2 hydrazone residue).

Anal. Calc. for  $C_{24}H_{26}N_4O_6$ : C, 61.80; H, 5.62; N, 12.01. Found: C, 62.02; H, 5.76; N, 11.72.

Refluxing of 2 with acetic anhydride. — Compound 2 (2 g) was refluxed with acetic anhydride (20 mL) for 1.5 h, the solution was poured into ice, and the precipitate obtained was filtered off, washed with water, and dried; yield 0.6 g. It was recrystallized from methanol, to give yellow needles, m.p. and mixed m.p. (with 5), 180–182°.

2-Phenyl-4-α-L-threofuranosyl-1,2,3-osotriazole (6). — A solution of the crude osazone mixture of 2 and 3 (10 g) in methanol (300 mL) was boiled under reflux, with stirring, and a solution of copper(II) sulfate (10 g) in water (100 mL) was added; then, 1-propanol (5 mL) was added, and the mixture was boiled for 8 h. It was cooled, filtered, the filtrate evaporated to dryness, the residue extracted with hot methanol, and the extract filtered. The filtrate was freed of copper ions by bubbling H<sub>2</sub>S gas through it, filtering the suspension, and then stirring the filtrate with Amberlite IR-MB3 cation-anion-exchange resin. The resin was filtered off, and washed thoroughly with methanol, and the filtrate and washings were combined, and evaporated to a syrup which was purified by column chromatography on Dowex-1 X-8 (OH<sup>-</sup>) ion-exchange resin<sup>17</sup>, with gradient elution with aqueous methanol (30, 60, and 90% methanol). Compound 6 was eluted with 90% methanol, and the eluate evaporated to dryness, giving a syrup which crystallized from ether-hexane as colorless needles, m.p.  $97-99^{\circ}$  (lit. m.p.  $102-103^{\circ}$ ),  $[\alpha]_{D}^{20}$   $-6.8^{\circ}$  (c 1.6, methanol); its enantiomer, 2-phenyl-4- $\alpha$ -D-threofuranosyl-1,2,3-osotriazole<sup>9a</sup> has  $[\alpha]_D^{20}$ (c 2, methanol); n.m.r. data (470 MHz, CDCl<sub>3</sub>):  $\delta$  3.815 (d, 1 H, OH, J 3.3 Hz), 3.911 (d, 1 H, OH, J 6.6 Hz), 3.961–3.987 (dd, 1 H, H-4", J<sub>3',4"</sub> 2.0, J<sub>4',4"</sub> 9.9 Hz), 4.129–4.160 (dd, 1 H, H-4', J<sub>3',4'</sub> 4.6 Hz), 4.253–4.261 (m, 1 H, H-3'), 4.395 (bs, 1 H, H-2'), 4.940 (d, 1 H, H-1',  $J_{1',2}$ . 3.23 Hz), 7.264-7.312 (q, 1 H, p-proton of the

phenyl group), 7.386–7.419 (t, 2 H, *m*-protons of the phenyl group), 7.777 (s, 1 H, H-5), and 7.898–7.915 (d, 2 H, *o*-protons of the phenyl group); after addition of  $CD_3CO_2D$ , the two OH protons disappeared; mass-spectral data: m/z 247 (24, M), 188 (28, B + 44, where B = 2-phenyl-1,2,3-osotriazole-4-yl moiety), 187 (12, BCH<sub>2</sub>CHO), 175 (19, B + 31), 174 (100, B + 30), 158 (7), 92 (18, PhNH), 91 (42, PhN), 77 (31, Ph), 65 (10, cyclopentadiene ion), 64 (12), 57 (6), 56 (7), and 55 (10).

### ACKNOWLEDGMENT

N.m.r. measurements were supported, in part, by the National Institutes of Health, Research Grant No. RR 01077 from the Division of Research Resources.

## REFERENCES

- 1 M. A. E SALLAM, J. Chem. Soc., Perkin Trans. I, (1982) in press.
- 2 M. A. E. SALLAM, Tetrahedron Lett., (1980) 183-186.
- 3 O. DIELS AND R. MEYER, Ann., 519 (1935) 152-164.
- 4 O. Diels, R. Meyer, and O. Onnen, Ann., 525 (1936) 94-117.
- 5 H. S. El Khadem, E. Schrier, G. Stohr, and E. Hardegger, Helv. Chim. Acta, 35 (1952) 993-999.
- 6 E. Schreier, G. Stohr, and E. Hardegger, Helv. Chim. Acta, 37 (1954) 35-41.
- 7 H. S. El Khadem, Z. M. El Shafei, and M. A. E. Sallam, Carbohydr. Res., 18 (1971) 147-150.
- 8 M. A. E. SALLAM, E. I. A. HEGAZY, R. L. WHISTLER, AND J. L. MARKLEY, Carbohydr. Res., 83 (1980) c1-c4.
- 9 (a) M. A. E. SALLAM AND E. I. A. HEGAZY, Carbohydr. Res., 90 (1981) 91–98. (b) M. A. E. SALLAM AND E. I. A. HEGAZY, ibid., 95 (1981) 177–188.
- 10 L. MESTER, H. S. EL KHADEM, AND G. VASS, Tetrahedron Lett., (1969) 4135-4138.
- 11 R. U. LEMIEUX AND D. R. LINEBACK, Annu. Rev. Biochem., 32 (1963) 155-184.
- 12 H. S. EL KHADEM, R. J. SINDRIC AND E. S. H. EL ASHRY, Carbohydr. Res., 30 (1973) 165-174.
- 13 H. SIMON AND A. KRAUS, in H. S. EL KHADFM (Ed.), Synthetic Methods for Carbohydrates, ACS Symp. Ser., 39 (1976) 188-206.
- 14 H. SIMON, W. WOLDENHAUER, AND A. KRAUS, Chem. Ber., 102 (1969) 2777-2786.
- 15 H. S. El Khadem, Carbohydr. Res., 23 (1972) 311-315.
- 16 N. K. RICHTMYER, Methods Carbohydr. Chem., 1 (1962) 164-166.
- 17 C. A. DEKKER, J. Am. Chem. Soc., 87 (1965) 4027-4029.